Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.585
Filtrar
1.
Zhongguo Gu Shang ; 37(4): 429-34, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38664218

RESUMO

The treatment of acute patellar dislocation remains a topic of debate among orthopedic surgeons. While conservative treatment has traditionally been favored, recent studies have highlighted the high redislocation rate, prompting a reevaluation of treatment strategies. Current approaches recognize the importance of addressing not only the knee joint but also associated factors contributing to instability. Surgical intervention, particularly focusing on restoring patellar stability through medial patella-femoral ligament (MPFL), repair or reconstruction, has gained popularity. MPFL reconstruction can provide long-term stability of the patella, but further research is needed. When acute patellar dislocation is associated with abnormal bony factors, multiple surgical modalities are often required, with the goal of restoring the normal trajectory of the patella, maintaining the stability of the patellofemoral joint, and optimizing knee joint function. This review provides an overview of advances in the treatment of acute patellar dislocation and related problems, so as to provide reference for clinicians.


Assuntos
Luxação Patelar , Humanos , Luxação Patelar/cirurgia , Luxação Patelar/terapia , Doença Aguda
2.
Aging (Albany NY) ; 16(7): 6455-6477, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613794

RESUMO

Gastric cancer presents a formidable challenge, marked by its debilitating nature and often dire prognosis. Emerging evidence underscores the pivotal role of tumor stem cells in exacerbating treatment resistance and fueling disease recurrence in gastric cancer. Thus, the identification of genes contributing to tumor stemness assumes paramount importance. Employing a comprehensive approach encompassing ssGSEA, WGCNA, and various machine learning algorithms, this study endeavors to delineate tumor stemness key genes (TSKGs). Subsequently, these genes were harnessed to construct a prognostic model, termed the Tumor Stemness Risk Genes Prognostic Model (TSRGPM). Through PCA, Cox regression analysis and ROC curve analysis, the efficacy of Tumor Stemness Risk Scores (TSRS) in stratifying patient risk profiles was underscored, affirming its ability as an independent prognostic indicator. Notably, the TSRS exhibited a significant correlation with lymph node metastasis in gastric cancer. Furthermore, leveraging algorithms such as CIBERSORT to dissect immune infiltration patterns revealed a notable association between TSRS and monocytes and other cell. Subsequent scrutiny of tumor stemness risk genes (TSRGs) culminated in the identification of CDC25A for detailed investigation. Bioinformatics analyses unveil CDC25A's implication in driving the malignant phenotype of tumors, with a discernible impact on cell proliferation and DNA replication in gastric cancer. Noteworthy validation through in vitro experiments corroborated the bioinformatics findings, elucidating the pivotal role of CDC25A expression in modulating tumor stemness in gastric cancer. In summation, the established and validated TSRGPM holds promise in prognostication and delineation of potential therapeutic targets, thus heralding a pivotal stride towards personalized management of this malignancy.


Assuntos
Aprendizado de Máquina , Células-Tronco Neoplásicas , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
3.
Front Neurosci ; 18: 1293400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650623

RESUMO

Background: Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods: 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results: Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion: Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.

4.
Bioresour Technol ; 400: 130696, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614144

RESUMO

Understanding large-scale composting under natural conditions is essential for improving waste management and promoting sustainable agriculture. In this study, corn straw (400 tons) and pig manure (200 tons) were composted with microbial inoculants. The thermophilic phase of composting lasted for fourteen weeks, resulting in an alkaline final product. Microbial systems with low-temperature initiation and high-temperature fermentation played a crucial role in enhancing lignocellulose degradation and humic substances (HS) formation. Adding microbes, including Rhodanobacter, Pseudomonas, and Planococcus, showed a positive correlation with degradation rates of cellulose, hemicellulose, and lignin. Bacillus, Planococcus, and Acinetobacter were positively correlated with HS formation. Microorganisms facilitated efficient hydrolysis of lignocelluloses, providing humic precursors to accelerate composting humification through phenolic protein and Maillard pathways. This study provides significant insights into large-scale composting under natural conditions, contributing to the advancement of waste management strategies and the promotion of sustainable agriculture.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38619963

RESUMO

Nonconvex optimization issues are prevalent in machine learning and data science. While gradient-based optimization algorithms can rapidly converge and are dimension-independent, they may, unfortunately, fall into local optimal solutions or saddle points. In contrast, evolutionary algorithms (EAs) gradually adapt the population of solutions to explore global optimal solutions. However, this approach requires substantial computational resources to perform numerous fitness function evaluations, which poses challenges for high-dimensional optimization in particular. This study introduces a novel nonconvex optimization algorithm, the niching-based gradient-directed evolution (NGDE) algorithm, designed specifically for high-dimensional nonconvex optimization. The NGDE algorithm generates potential solutions and divides them into multiple niches to explore distinct areas within the feasible region. Subsequently, each individual creates candidate offspring using the gradient-directed mutation operator we designed. The convergence properties of the NGDE algorithm are investigated in two scenarios: accessing the full gradient and approximating the gradient with mini-batch samples. The experimental studies demonstrate the superior performance of the NGDE algorithm in minimizing multimodal optimization functions. Additionally, when applied to train the neural networks of LeNet-5, NGDE shows significantly improved classification accuracy, especially in smaller training sizes.

6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38625732

RESUMO

A novel Gram-stain-negative and facultatively anaerobic bacterium, designated A6E488T, was isolated from intertidal sediment collected from Xiaoshi Island, Weihai, PR China (122° 1' E 37° 31' N). Cells of strain A6E488T were rod-shaped with widths of 0.3-0.4 µm and lengths of 1.1-1.8 µm. The optimal growth conditions were determined to be in 1 % (w/v) NaCl, at 37 °C, and at pH 7.0. The predominant fatty acids (≥10 %) were C19 : 0 cyclo ω8c (59.7 %) and summed feature 8 (13.8 %, C18 : 1 ω7c and/or C18 : 1 ω6c). The sole isoprenoid quinone was Q-10. Oxidase activity was negative but catalase activity was positive. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid, one unidentified glycolipid, and one unidentified lipid. Based on phylogenetic analysis of 16S rRNA gene sequences, strain A6E488T showed the highest sequence similarity to Microbaculum marinum MCCC 1K03192T (97.6 %). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain A6E488T and M. marinum MCCC 1K03192T did not exceed 78 and 22 %, respectively. These values are below the recommended thresholds of 95 % (ANI) and 70 % (dDDH) for prokaryotic species delineation. On the basis of gene annotation, it was observed that strain A6E488T possesses the capability for thiosulphate oxidation, suggesting that this strain might be important in the sulphur cycle. Based on the results of phenotypic, genotypic, and chemical characterization, strain A6E488T is considered to represent a novel species of the genus Microbaculum, for which the name Microbaculum marinisediminis sp. nov. is proposed. The type strain is A6E488T (=KCTC 92197T=MCCC 1H00516T).


Assuntos
Ácidos Graxos , Sedimentos Geológicos , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Nucleotídeos
8.
Huan Jing Ke Xue ; 45(5): 2780-2792, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629541

RESUMO

Understanding the strength of trade-off and synergistic relationships among ecosystem services (ESs) is crucial for ecological management and restoration in the Fenhe River Basin. However, there is still a lack of sufficient research on the driving variables and spatial pattern optimization of the strength of ESs relationships in this area. Based on the quantitative assessment of six ESs in the Fenhe River Basin in 2000 and 2020, the ecosystem services trade-off synergy index (TSI) was introduced to quantitatively measure the strength of trade-off and synergistic relationships between each pair of ESs. A Bayesian network was constructed to identify the driving variables of trade-off and synergistic relationships, and sensitivity analysis was conducted to determine the degree of influence of key variables on the strength of these relationships. The optimization area of the strength of ESs trade-off and synergistic relationships was characterized in spatial patterns. The results showed that:① There were significant spatiotemporal differences in the six ESs in the Fenhe River Basin in 2000 and 2020. In terms of time scale, water yield, net primary productivity, crop productivity, soil conservation, and carbon storage all showed a trend of fluctuating increase. In terms of spatial scale, the spatial distribution changes in the six ESs were relatively small over the 20 years. ② The TSI of carbon storage was high in the surrounding area and low in the middle, showing a four-high and four-low pattern. The areas with the highest TSI between grain supply and other services were distributed from north to south. ③ Sensitivity analysis found that the strength of water yield, soil conservation, and habitat quality were significantly affected by precipitation, plant root depth restriction, and rainfall erosion. According to the conditional probability of different states of key variables, Wenshui County, Qingxu County, and Qi County in the central part of the Fenhe River Basin were identified as high-value areas for trade-off and synergistic relationships, which could be used as key areas for ecological restoration. These findings have important theoretical and practical significance for understanding the complex relationship between multiple ESs trade-off and synergistic relationships and their driving variables and for proposing sustainable ecological environment management policies.

9.
Opt Express ; 32(6): 10703-10714, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571275

RESUMO

Photonic Floquet-Bloch oscillations (FBOs), a new type of Bloch-like oscillations in photonic Floquet lattices, have recently been observed as a typical discrete self-imaging effect. Here, we theoretically investigate the spectral range of approximate photonic Floquet-Bloch oscillations in arrays of evanescently coupled optical waveguides and show the adjustability of the spectral range. At an appropriate amplitude of the Floquet modulation, we have demonstrated approximate photonic FBOs over a broad spectral range, termed "polychromatic photonic Floquet-Bloch oscillations," which manifest as approximate self-imaging of polychromatic beams. Furthermore, by designing the functional form of the Floquet modulation, we can cascade two polychromatic photonic FBOs and further enhance the performance of polychromatic self-imaging. Our results provide a simple and novel mechanism for achieving polychromatic self-imaging in waveguide arrays and may find applications in polychromatic beam shaping and broadband optical signal processing.

10.
Front Bioeng Biotechnol ; 12: 1382085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572358

RESUMO

In this study, a high-efficiency superparamagnetic drug delivery system was developed for preclinical treatment of bladder cancer in small animals. Two types of nanoparticles with magnetic particle imaging (MPI) capability, i.e., single- and multi-core superparamagnetic iron oxide nanoparticles (SPIONs), were selected and coupled with bladder anti-tumor drugs by a covalent coupling scheme. Owing to the minimal particle size, magnetic field strengths of 270 mT with a gradient of 3.2 T/m and 260 mT with a gradient of 3.7 T/m were found to be necessary to reach an average velocity of 2 mm/s for single- and multi-core SPIONs, respectively. To achieve this, a method of constructing an in vitro magnetic field for drug delivery was developed based on hollow multi-coils arranged coaxially in close rows, and magnetic field simulation was used to study the laws of the influence of the coil structure and parameters on the magnetic field. Using this method, a magnetic drug delivery system of single-core SPIONs was developed for rabbit bladder therapy. The delivery system consisted of three coaxially and equidistantly arranged coils with an inner diameter of Φ50 mm, radial height of 85 mm, and width of 15 mm that were positioned in close proximity to each other. CCK8 experimental results showed that the three types of drug-coupled SPION killed tumor cells effectively. By adjusting the axial and radial positions of the rabbit bladder within the inner hole of the delivery coil structure, the magnetic drugs injected could undergo two-dimensional delivery motions and were delivered and aggregated to the specified target location within 12 s, with an aggregation range of about 5 mm × 5 mm. In addition, the SPION distribution before and after delivery was imaged using a home-made open-bore MPI system that could realistically reflect the physical state. This study contributes to the development of local, rapid, and precise drug delivery and the visualization of this process during cancer therapy, and further research on MPI/delivery synchronization technology is planned for the future.

11.
Front Microbiol ; 15: 1366814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577678

RESUMO

Introduction: Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods: This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results: Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion: Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.

12.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659742

RESUMO

Background: Phospholamban (PLN) is a key regulator of cardiac function connecting adrenergic signaling and calcium homeostasis. The R9C mutation of PLN is known to cause early onset dilated cardiomyopathy (DCM) and premature death, yet the detailed mechanisms underlie the pathologic remodeling process are not well defined in human cardiomyocytes. The aim of this study is to unravel the role of PLN R9C in DCM and identify potential therapeutic targets. Methods: PLN R9C knock-in (KI) and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated and comprehensively examined for their expression profile, contractile function, and cellular signaling under both baseline conditions and following functional challenges. Results: PLN R9C KI iPSC-CMs exhibited near-normal morphology and calcium handling, slightly increased contractility, and an attenuated response to ß-adrenergic activation compared to wild-type (WT) cells. However, treatment with a maturation medium (MM) has induced fundamentally different remodeling in the two groups: while it improved the structural integrity and functional performance of WT cells, the same treatment result in sarcomere disarrangement, calcium handling deficiency, and further disrupted adrenergic signaling in PLN R9C KI cells. To understand the mechanism, transcriptomic analysis showed the enrichment of protein homeostasis signaling pathways specifically in PLN R9C KI cells in response to the MM treatment and increased contractile demands. Further studies also indicated elevated ROS levels, interrupted autophagic flux, and increased pentamer PLN aggregation in functionally challenged KI cells. These results were further confirmed in patient-specific iPSC-CM models, suggesting that functional stresses exacerbate the deficiencies in PLN R9C cells through disrupting protein homeostasis. Indeed, treating stressed patient cells with autophagy-accelerating reagents, such as metformin and rapamycin, has restored autophagic flux, mitigated sarcomere disarrangement, and partially rescued ß-adrenergic signaling and cardiac function. Conclusions: PLN R9C leads to a mild increase of calcium recycling and contractility. Functional challenges further enhanced contractile and proteostasis stress, leading to autophagic overload, structural remodeling, and functional deficiencies in PLN R9C cardiomyocytes. Activation of autophagy signaling partially rescues these effects, revealing a potential therapeutic target for DCM patients with the PLN R9C mutation. Graphic abstracts: A graphic abstract is available for this article.

13.
Eur J Pharmacol ; 972: 176551, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570082

RESUMO

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.

14.
Front Pharmacol ; 15: 1370631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606177

RESUMO

Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, ß-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the ß-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.

15.
Asian J Surg ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609822

RESUMO

INTRODUCTION: Pulmonary metastasectomy has been clarified in improving long-term survival in most primary malignancies with pulmonary metastasis, while the role of additional lymph node dissection remained controversial. We aimed to investigate the prognosis of lymph node involvement and identify the role of lymph node dissection during pulmonary metastasectomy in a real-world cohort. METHODS: We identified patients diagnosed with pulmonary metastases with ≤3 cm in size and received pulmonary metastasectomy between 2004 and 2017 in the Surveillance, Epidemiology, and End Results database. We compared the survival via Kaplan-Meier analysis and propensity score matching method, and the multivariable analysis was conducted by cox regression analysis. RESULTS: A total of 3452 patients were included, of which 2268(65.7%) received lymph node dissection, and the incidence of node-positive was 11.3%(256/2268). In total, the median overall survival was 62.8 months(interquartile range, 28.6-118.9 months), and the lymph node involvement was referred to an impaired survival compared to node-negative diseases(5-year overall survival rate, 58.0% versus 38.6%), with comparable survival between N1 and N2 diseases(P = 0.774). Lymph node dissection was associated with improved survival(HR = 0.80; 95%CI, 0.71-0.90; P < 0.001), and the survival benefits remained regardless of age, sex, the number of metastases, and surgical procedures, even in those with node-negative diseases. At least eight LNDs might lead to a significant improvement in survival, and additional survival benefits might be limited with additional dissected lymph nodes. CONCLUSIONS: Lymph node involvement was associated with impaired survival, and lymph node dissection during pulmonary metastasectomy could improve long-term survival and more accurate staging.

16.
Heliyon ; 10(7): e29013, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601573

RESUMO

After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.

17.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629942

RESUMO

High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen's ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.


Assuntos
Doença da Altitude , Ferroptose , Animais , Camundongos , Humanos , Baço , Esplenomegalia , Leucócitos Mononucleares , Macrófagos , Hipóxia
18.
J Chem Theory Comput ; 20(8): 3008-3018, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593438

RESUMO

Assessments of machine-learning (ML) potentials are an important aspect of the rapid development of this field. We recently reported an assessment of the linear-regression permutationally invariant polynomial (PIP) method for ethanol, using the widely used (revised) rMD17 data set. We demonstrated that the PIP approach outperformed numerous other methods, e.g., ANI, PhysNet, sGDML, and p-KRR, with respect to precision and notably with respect to speed [Houston et al., J. Chem. Phys. 2022, 156, 044120]. Here, we extend this assessment to the 21-atom aspirin molecule, using the rMD17 data set, with a focus on the speed of evaluation. Both energies and forces are used for training, and the precision of several PIPs is examined for both. Normal mode frequencies, the methyl torsional potential, and 1d vibrational energies for an OH stretch are presented. We show that the PIP approach achieves the level of precision obtained from other ML methods, e.g., atom-centered neural network methods, linear regression ACE, and kernel methods, as reported by Kovács et al. in J. Chem. Theory Comput. 2021, 17, 7696-7711. More significantly, we show that the PIP PESs run much faster than all other ML methods, whose timings were evaluated in that paper. We also show that the PIP PES extrapolates well enough to describe several internal motions of aspirin, including an OH stretch.

19.
World J Gastroenterol ; 30(10): 1405-1419, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596488

RESUMO

BACKGROUND: Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear. AIM: To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium (DSS)-induced colitis. METHODS: Mice were administered 3% DSS drinking water, and disease activity index was determined to evaluate the status of colitis. Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran, and bacterial translocation was evaluated by measuring serum lipopolysaccharide. Intestinal epithelial cell ultrastructure was observed by electron microscopy. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA, respectively. Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels. RESULTS: Compared to wild-type (WT) mice, inflammation and intestinal permeability in alk-SMase knockout (KO) mice were more severe beginning 4 d after DSS induction. The mRNA and protein levels of intestinal barrier proteins, including zonula occludens-1, occludin, claudin-3, claudin-5, claudin-8, mucin 2, and secretory immunoglobulin A, were significantly reduced on 4 d after DSS treatment. Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells. Furthermore, by day 4, mitochondria appeared swollen and degenerated. Additionally, compared to WT mice, serum malondialdehyde levels in KO mice were higher, and the antioxidant capacity was significantly lower. The expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment. mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased. Finally, colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone, which is an Nrf2 activator. CONCLUSION: Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.


Assuntos
Colite Ulcerativa , Colite , Doença de Niemann-Pick Tipo A , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo
20.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598684

RESUMO

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...